丙二醇甲醚中超痕量金属杂质元素的 ICP-MS/MS 分析

李坦平,李爱阳

湖南工学院新型建筑材料研究院,湖南 衡阳 421002

摘 要 基于电感耦合等离子体串联质谱(ICP-MS/MS)建立了准确测定丙二醇甲醚中超痕量金属杂质元素 的分析方法,提出了利用混合反应气消除质谱干扰的新策略。丙二醇甲醚经超纯水稀释后直接采用 ICP-MS/MS 测定其中具有挑战性的超痕量金属元素 Mg, Al, K, Ti, V, Cr, Fe, Ni, Cu和 Zn, 在 MS/MS 模式 下,选择混合气 NH₃/He/H₂ 为反应气,Ti⁺,Cr⁺,Fe⁺,Ni⁺,Cu⁺,Zn⁺与 NH₃ 发生质量转移反应,在形 成的团簇离子中,Ti(NH₃)⁺,Cr(NH₃)⁺,Fe(NH₃)⁺,Ni(NH₃)⁺,Cu(NH₃)⁺,aZn(NH₃)⁺ 丰度高且无 干扰,利用 NH₃ 质量转移法将 Ti⁺, Cr⁺, Fe⁺, Ni⁺, Cu⁺和 Zn⁺转移为相应的团簇离子进行测定: H₂能 与加合物-NH和-NH2反应生成-NH3,增大碰撞/反应池(CRC)内-NH3的浓度,有利于提高Ti,Cr, Fe, Ni, Cu和Zn的分析灵敏度。Mg⁺, Al⁺, K⁺和V⁺几乎不能与NH₃反应,而干扰离子能与NH₃反应 形成团簇离子,可以利用 NH。原位质量法进行 Mg, Al, K, V 的测定; H。能快速与 Ar 基干扰离子发生反 应,而与其他离子的反应速度很慢,反应气中加入 H₂ 能迅速彻底消除 Ar 基干扰离子所形成的质谱干扰, 有利于 Mg, Al, K 和 V 的测定。优选 Sc⁺ 与 NH₃ 反应生成的团簇离子 Sc(NH₃)⁺₅ 为 Ti(NH₃)⁺₆, Cr(NH₃)⁺, Fe(NH₃)⁺, Ni(NH₃)⁺₃, Cu(NH₃)⁺₂ 和 Zn(NH₃)⁺ 的内标离子, Be⁺与 NH₃ 反应生成的团簇 离子 Be(NH₃)⁺ 为 Mg⁺, Al⁺, K⁺和 V⁺内标离子, 校正了样品溶液, 标准溶液和空白溶液之间由于物理化 学性质差异产生的基体效应,确保了分析信号的稳定。将所建立的方法应用实际样品的加标回收实验,并采 用双聚焦扇形磁场电感耦合等离子体质谱(SF-ICP-MS)进行对比分析,评价分析方法的准确性。结果表明, 各元素的检出限为 0.52~61.5 ng · L⁻¹, 加标回收率为 95.6%~104.2%, 相对标准偏差(RSD) 《4.5%; 在 95%的置信度水平,所有元素的分析结果与 SF-ICP-MS 的测定结果无显著性差异,验证了分析方法的准确 性好,精密度高。将方法应用于丙二醇甲醚中超痕量金属杂质元素的测定,具有分析速度快,无干扰,灵敏 度高的优势。

关键词 电感耦合等离子串联质谱;丙二醇甲醚;金属杂质元素;碰撞反应池技术;NH₃/He/H₂ 中图分类号:O657.63 文献标识码:A DOI: 10.3964/j.issn.1000-0593(2021)02-0618-06

引 言

丙二醇甲醚(PGME)是同时含有亲水基团和疏水官能团 的低毒环保有机溶剂^[1],对极性和非极性化合物都表现出良 好的溶解能力,是传统溶剂乙二醇醚的理想替代品,作为通 用溶剂广泛应用于化工、制药、电子、材料、冶金等领域^[2]。 在半导体行业,PGME用作光阻稀释剂、剥离剂、光阻去除 液,工业用清洗剂和去光阻缓冲液^[3],其金属杂质元素含量 过高会严重影响电子化学品的性能和可靠性,随着微电子技 术的不断升级,对 PGME 的金属杂质元素含量要求也越来 越高,在超痕量水平上进行金属杂质元素的检测至关重要。

电感耦合等离子体质谱法(ICP-MS)由于其高灵敏度、低检出限和快速的多元素分析能力,被认为是分析化学中最强大和应用最广泛的分析技术^[1+6],是半导体工业中测定痕量金属杂质元素的首选技术^[7]。然而,采用四极杆 ICP-MS (ICP-QMS)测定 PGME 中的金属杂质元素非常具有挑战性,因为这些金属杂质元素的浓度通常很低,而且极易受到严重质谱干扰。目前,ICP-QMS 消除质谱干扰最通用的方法是使用碰撞/反应池(CRC)技术^[8],然而,在 He 碰撞模式下无法有效消除诸如同量异位素,双电荷离子的干扰;在反应模式下,不可控制的反应历程以及在 CRC 内不可预知的副反应

作者简介:李坦平,1963年生,湖南工学院新型建筑材料研究院教授 e-mail: ltp_988@163.com

收稿日期: 2019-12-26,修订日期: 2020-03-19

基金项目:国家自然科学基金项目(81603400),湖南省自然科学基金项目(2019JJ60026),湖南省应用特色学科材料科学与工程学科(湘教通 [2018]469 号)资助

产物可能对分析离子构成新干扰,影响分析结果的准确性和 稳定性。

电感耦合等离子体串联质谱法(ICP-MS/MS)在 CRC 和 等离子体之间配置一级四极杆质量过滤器(Q₁),仅允许与目 标离子具有相同质荷比(*m*/*z*)的离子进入 CRC 内,目标离子 或干扰离子与反应气发生质量转移反应后通过二级四极杆质 量过滤器(Q₂)再次过滤使目标离子进入检测器,几乎可以完 全消除所有质谱干扰^[9-10]。采用 ICP-MS/MS 对 PGME 中易 受干扰的超痕量金属杂质元素 Mg,Al,K,Ti,V,Cr,Fe, Ni,Cu和 Zn进行测定,利用混合反应气 NH₃/He/H₂ 消除 质谱干扰,旨在建立灵敏度高,选择性好,消除干扰彻底的 高通量分析方法。

1 实验部分

1.1 仪器及参数

Agilent 8800 电感耦合等离子体串联质谱仪(ICP-MS/ MS,美国 Agilent 公司)。Milli-Q 纯水系统(美国 Millipore 公司)。ICP-MS/MS 的参数设置见表 1。

1.2 标准溶液与试剂

1 000 mg • L⁻¹ 的 Mg, Al, K, Ti, V, Cr, Fe, Ni, Cu, Zn, Be 和 Sc 单元素标准溶液(国药集团化学试剂有限公 司); 电子级 PGME 购于上海, 广州, 扬州。

1.3 方法

将 PGME 用超纯水稀释 10 倍后直接采用 ICP-MS/MS

测定,利用 T 型内标混合接头在线加入 1 mg • L⁻¹的 Be, Sc 混合内标溶液。

2 结果与讨论

2.1 分析模式的选择

考察了在不同分析模式下分析元素的背景等效浓度 (BEC),在单四极杆(SQ,Q₁无过滤功能)模式下对无气体 和 He 碰撞气进行了评价,在 MS/MS模式(Q₁和Q₂均具有 离子过滤功能)下,对反应气 NH₃/He 和混合反应气 NH₃/ He/H₂进行了评价,以确定 MS/MS模式下使用混合反应气 的优势,结果见表 2。

表 1 ICP-MS/MS 的操作参数 Table 1 ICP-MS/MS operating parameters

Parameter	Setting
RF power/W	1 550
Carrier gas flow/($L \cdot min^{-1}$)	1.05
Make up gas flow/(L \cdot min ⁻¹)	0.25
Sampling depth/mm	8
Cell gas	$NH_3/He/H_2(10\%\ NH_3$ in He)
Cell gas flow rate/(mL \cdot min ⁻¹)	NH_3/He : 2.8; $H_2 = 2.0$
ORS bias voltage/V	-18
KED voltage/V	-8

		$BEC/(ng \cdot L^{-1})$				
Isotope	Potential interferences	SQ r	node	MS/MS mode		
		no gas	He	NH ₃ /He	$\mathrm{NH_3}/\mathrm{He}/\mathrm{H_2}$	
$^{24}\mathrm{Mg}$	${}^{12}C_2$, ${}^{23}Na^1H$, ${}^{7}Li^{17}O$, ${}^{48}Ti^{++}$, ${}^{48}Ca^{++}$	2 970	411	29.8	31.2	
²⁷ Al	${}^{12}C^{15}N$, ${}^{12}C^{14}NH$	860	202	77.3	75.4	
³⁹ K	³⁸ ArH, ²³ Na ¹⁶ O	189 000	65 300	126	84.3	
⁴⁸ Ti	${}^{32}S^{16}O, {}^{34}S^{14}N, {}^{33}S^{15}N, {}^{14}N^{16}O^{18}O, {}^{36}Ar^{12}C$	1 560	87.4	21.0	16.7	
$^{51} m V$	${}^{35}\text{Cl}{}^{16}\text{O}$, ${}^{36}\text{Ar}{}^{14}\text{NH}$, ${}^{34}\text{Ar}{}^{16}\text{OH}$, ${}^{36}\text{Ar}{}^{13}\text{C}$, ${}^{36}\text{Ar}{}^{15}\text{N}$	479	15.3	8.16	5.04	
$^{52}\mathrm{Cr}$	$^{40}\mathrm{Ar^{12}C},\ ^{35}\mathrm{Cl^{16}OH},\ ^{36}\mathrm{Ar^{16}O},\ ^{38}\mathrm{Ar^{14}N},\ ^{36}\mathrm{Ar^{15}N^{1}H}$	2 170	73.6	41.4	35.8	
$^{56}\mathrm{Fe}$	40 Ar 16 O, 40 Ca 16 O, 40 Ar 15 N 1 H, 38 Ar 18 O, 112 Cd $^{++}$	1 810	425	122	94.1	
⁶⁰ Ni	²³ Na ³⁶ ArH, ²³ Na ³⁷ Cl, ⁴⁴ Ca ¹⁶ O, ⁵⁹ CoH	316	49.7	21.8	17.6	
⁶³ Cu	23 Na ⁴⁰ Ar, 23 Na ⁴⁰ Ca, 12 C ¹⁶ O ³⁵ Cl, 12 C ¹⁴ N ³⁷ Cl, 46 Ca ¹⁶ OH	177	51.3	40.5	34.4	
⁶⁶ Zn	${}^{34}\mathrm{S}{}^{16}\mathrm{O}_2$, ${}^{48}\mathrm{Ti}{}^{18}\mathrm{O}$, ${}^{48}\mathrm{Ca}{}^{18}\mathrm{O}$, ${}^{32}\mathrm{S}{}^{17}\mathrm{O}_2$, ${}^{33}\mathrm{S}{}^{17}\mathrm{O}{}^{16}\mathrm{O}$, ${}^{32}\mathrm{S}{}^{34}\mathrm{S}$	223	148	116	89.5	

表 2 在不同分析模式下分析元素的背景等效浓度(BEC) Table 2 Background equivalent concentrations (BEC) of analytes in different analysis modes

在 SQ 无气体模式下,由于没有消除质谱干扰,所有分 析元素的 BEC 均处于较高水平,采用 He 碰撞气可以将大多 数元素的干扰消除至较低水平,但 Mg,K,Ti,Cr 的 BEC 仍 然处于较高水平,尤其是 K 的 BEC 太高无法进行准确测定。 在 MS/MS 模式下采用 NH₃/He 反应气,除 Fe 以外,所有 元素的 BEC 均降低到 100 ng · L⁻¹ 以下,由于²⁴ Mg⁺, ²⁷ Al⁺, ³⁹ K⁺, ⁵¹ V⁺ 不与 NH₃/He 反应,而这些同位素的干 扰离子能与 NH₃/He 反应形成团簇离子,设置 Q₁ = Q₂ = 24, 27, 39 和 51,利用原位质量法消除干扰;而对于⁴⁸ Ti⁺, 52 Cr⁺, 56 Fe⁺, 60 Ni⁺, 63 Cu⁺, 66 Zn⁺, 优选丰度高且无干扰 的产物离子⁴⁸Ti(14 NH₃) ${}^{+}_{6}$, 52 Cr(14 NH₃) ${}^{+}_{2}$, 56 Fe(14 NH₃) ${}^{+}_{2}$, 60 Ni(14 NH₃) ${}^{+}_{3}$, 63 Cu(14 NH₃) ${}^{+}_{2}$, 65 Zn(14 NH₃) ${}^{+}_{2}$, 56 Fe(14 NH₃) ${}^{+}_{2}$, 60 Si(14 NH₃) ${}^{+}_{3}$, 61 Cu(14 NH₃) ${}^{+}_{2}$, 65 Zn(14 NH₃) ${}^{+}_{2}$, 56 Se(14 NH₃) ${}^{+}_{3}$, 56 Se(14 NH₃) ${}^{+}_{3}$, 56 Se(14 NH₃) ${}^{+}_{3}$, 56 Se(14 NH₃) ${}^{+}_{2}$, 66 Se(14 NH₃) ${}^{+}_{3}$, 56 Se(16 Se(14 NH₃) ${}^{-}_{3}$, 16 Se(14 NH₃){}^{+}_{3}Se(14 Mg⁺)He/H₂, 14 Mg⁺)He/H₂, 14 Se(12 Se(11 Se(14 Se(14 Se(14 Se)Se(14 S Ar 基离子的干扰, H₂ 消除干扰作用不明显,而对于³⁹K⁺和 ⁵¹V⁺,由于受到 Ar 基离子的干扰,加入少量 H₂ 的作用明 显,降低了³⁹K⁺和⁵¹V⁺的 BEC;在质量转移法消除干扰过程 中,加入少量 H₂ 能与加合物一NH,一NH₂ 反应生成加合 物一NH₃,而本实验采用质量转移法进行的监测离子以及相 应内标离子均为 M(NH₃)^{*}(其中 M 分别为 Ti, Cr, Fe, Ni, Cu, Zn, Be, Sc),因此,加入的少量 H₂ 能提高 CRC 内 一NH₃的浓度,促进形成了更多的监测离子。因此,无论是 原位质量法还是质量转移法消除干扰,向 NH₃/He 中加入 少量 H₂ 消除干扰更彻底,本实验在 MS/MS 模式下选择混 合反应气 NH₃/He/H₂ 消除干扰。

2.2 质谱干扰的消除

为了验证 ICP-MS/MS 消除干扰的能力,在 1 μ g • L⁻¹ 的 Mg, Al, Ti, V, Cr, Ni, Cu 和 Zn 标准溶液中添加 100 mg • L⁻¹干扰物,计算分析元素的回收率。从表 3 可以看出, 在 SQ 无气模式下,所有元素受到了严重的质谱干扰,回收 率均大于 200%,而在 MS/MS 模式下采用 NH₃/He/H₂ 反 应气,所有元素的回收率在 97.5% - 103.4%之间,获得了 准确的结果。

2.3 NH₃/He 反应气流速的优化

为了在反应模式下获得最合适的 NH₃/He 反应气流速, 将 1 μ g • L⁻¹的 Mg, Al, V, Ti, Cr, Ni, Cu 和 Zn 标准溶液 加入 100 mg • L⁻¹干扰物, 对分析离子进行扫描,考察不同 NH₃/He 流速对监测离子信号强度的影响,结果见图 1。

	表 3	个同模式下用于消除十扤头验的回收率
Table 3	Recovery	of interference removal experiment in different modes

Analyte	Inter	ference	Recovery/ %		
	Added interferent	Interfering ion	No gas mode	$\rm NH_3/He/H_2$ reaction mode	
$^{24}\mathrm{Mg}$	C (Ethanol)	${}^{12}C_2^+$	307	101.3	
²⁷ Al	C (Ethanol)	$^{12}\mathrm{C}^{15}\mathrm{N}^{+}$, $^{12}\mathrm{C}^{14}\mathrm{NH}^{+}$	223	99.1	
³⁹ K	/	$^{38}\mathrm{ArH^+}$	851	98.6	
⁴⁸ Ti	$S (SO_4^{2-})$	$^{32}{\rm S}^{16}{\rm O}^+$, $^{34}{\rm S}^{14}{\rm N}^+$	1 260	102.5	
51 V	Cl (Cl ⁻)	$^{35}\mathrm{Cl}^{16}\mathrm{O}^+$	208	100. 7	
$^{52}\mathrm{Cr}$	C (Euhanol)	$^{40}{ m Ar^{12}C^+}$	715	101.6	
⁵⁶ Fe	/	${}^{40}{\rm Ar}{}^{16}{\rm O}^+$	1 070	97.5	
⁶⁰ Ni	Na (Na ⁺)	²³ Na ³⁶ ArH ⁺	322	99.1	
⁶³ Cu	Na (Na ⁺)	$^{23}{ m Na}^{40}{ m Ar}^+$	450	103. 4	
⁶⁶ Zn	$S (SO_4^{2-})$	$^{34}S^{16}O_2^+$, $^{32}S^{17}O_2^+$	279	98.9	

Note: "/": no interferent added

(a): 原位质量法; (b): 质量转移法

由图 1(a)可以看出,随着 NH₃/He 流速的增加,Mg⁺, Al⁺,K⁺和 V⁺的信号强度逐渐减小,干扰逐渐消除,当 NH₃/He 流速分别达到 2.6,2.8,2.7 和 2.4 mL · min⁻¹时, 4 个分析离子的信号强度处于较低水平,随后增大 NH₃/He 流速,分析离子的信号强度基本保持平稳状态,采用原位质 量法消除干扰时的最佳 NH₃/He 流速为 2.8 mL · min⁻¹。由 图 1(b)看出,随着 NH₃/He 流速的增加,6 个分析离子的信 号强度逐渐增大,团簇离子逐渐形成,当 NH₃/He 流速分别 达到 2.5,2.6,2.4,2.5,2.4 和 2.6 mL • min⁻¹时,6 个团 簇离子的信号强度处于最大值,随后增大 NH₃/He 流速,6 个团簇离子的信号强度开始缓慢降低,采用质量转移法消除 干扰时最佳 NH₃/He 流速为 2.6 mL • min⁻¹。为确保原位质 量法消除干扰彻底,并确保质谱转移法的灵敏度均处于较高 水平,本实验最终选择 NH₃/He 流速为 2.8 mL • min⁻¹。

2.4 基体效应的校正

针对 ICP-MS/MS 分析过程中的基体效应,通过加入内 标元素 Be 和 Sc 进行校正。在 NH₃/He/H₂ 反应模式下, Be⁺与 NH₃ 反应形成的团簇离子 Be(NH₃)⁴₊与 Mg⁺, Al⁺, K⁺和 V⁺质量数接近且有相似的质谱行为, Sc⁺与 NH₃ 反 应形成的团簇离子 Sc(NH₃)⁵₅ 质量数接近且有相似的质谱 行为,因此,实验选择 Be(NH₃)⁴₊为 Mg⁺, Al⁺, K⁺和 V⁺ 的内标离子,选择 Sc(NH₃)⁵₅ 为 Ti(NH₃)⁶₆, Cr(NH₃)²₂, Fe(NH₃)²₂, Ni(NH₃)³₈, Cu(NH₃)²₂ 和Zn(NH₃)⁺ 作为内标 离子,校正了基体效应,并有效防止了分析信号漂移,确保 了分析信号稳定。

2.5 校准曲线与检出限

为评价 ICP-MS/MS 的分析性能, 配制不同浓度的分析 元素标准溶液建立校准曲线。从表 4 可以看出, 10 个分析元 素在 0~100 μ g・L⁻¹范围内的线性相关系数 r≥0.9997, 所 有分析元素的线性关系良好。各元素的检出限(LOD)为 0.52 ~61.5 ng・L⁻¹, 能满足 PGME 中超痕量金属杂质元素的测 定要求。

表 4 校准数据与检出限 Table 4 Calibration data and instrumental limits of detection (LOD)

Element	Linear range $/(\mu \mathbf{g} \cdot \mathbf{L}^{-1})$	Coefficient (r)	$\frac{\text{LOD}}{/(\text{ng} \cdot \text{L}^{-1})}$	Element	Linear range $/(\mu \mathbf{g} \cdot \mathbf{L}^{-1})$	Coefficient (r)	$LOD / (ng \cdot L^{-1})$
Mg	$0 \sim 100$	0.999 9	15.1	Cr	0~100	1.000 0	2.18
Al	$0 \sim 100$	1.000 0	17.2	Fe	0~100	0.999 8	35.3
Κ	$0 \sim 100$	0.999 8	61.5	Ni	0~100	1.000 0	9.75
Ti	$0 \sim 100$	0.999 7	3.84	Cu	0~100	0.999 9	5.81
V	$0 \sim 100$	1.000 0	0.52	Zn	0~100	0.999 8	40.6

2.6 方法的准确性与精密度

采用实际样品进行加标回收实验验证方法的准确性与精 密度,并采用双聚焦扇形磁场 ICP-MS(SF-ICP-MS)对加标 样品进行了对比分析,应用 t 检验法进行统计分析,样品重 复测定 6 次,结果见表 5。加标回收率为 95.6%~104.2%, RSD≪4.5%, ICP-MS/MS 的测定结果与 SF-ICP-MS 无显著 性差异(p>0.05),验证了方法的准确性好,精密度高。

2.7 样品分析

选取分别购于上海,广州,扬州的电子级 PGME 样品 (样品编号 1,2,3),采用所建立的 ICP-MS/MS 进行分析, 同时采用 SF-ICP-MS 进行分析,每个样品重复测定 6 次。从 表 6 可以看出,3 种电子级 PGME 样品中的金属杂质元素均 处于 ng 级水平, ICP-MS/MS 与 SF-ICP-MS 的分析结果基 本一致。

			r			
Element	Spiked /($\mu g \cdot L^{-1}$)	Found by ICP-MS/MS $/(\mu g \cdot L^{-1})$	RSD / %	Recovery	Found by SF-ICP-MS $/(\mu g \cdot L^{-1})$	t test
Mg	5.00	5.12 \pm 0.23	4.5	102.4	5.08 ± 0.19	p=0.37
Al	5.00	4.91±0.11	2.2	98.2	4.85 \pm 0.12	p=0.15
К	5.00	4.88±0.10	2.0	97.6	4.94 ± 0.15	p = 0.21
Ti	5.00	5.09 \pm 0.15	2.9	101.8	5.16±0.21	p = 0.26
V	5.00	5.17 \pm 0.19	3.7	103.4	5.05 \pm 0.24	p = 0.18
Cr	5.00	4.83±0.14	2.9	96.6	4.74 \pm 0.18	p = 0.11
Fe	5.00	5.21±0.20	3.8	104.2	5.13 \pm 0.16	p=0.23
Ni	5.00	4.78±0.08	1.7	95.6	4.82±0.12	p = 0.26
Cu	5.00	4.81±0.21	4.4	96.2	4.85±0.09	p = 0.33
Zn	5.00	5.19 \pm 0.14	2.7	103.8	5.07 \pm 0.10	p = 0.06

表 5 方法的准确性和精密度(n=6)Table 5 The accuracy and precisions of method (n=6)

表 6 PGME 中 10 个超痕量金属元素的分析结果(ng・g⁻¹, n=6)

Table 6 Analytical results for determination of 10 ultra-trace metal elements in PGME ($ng \cdot g^{-1}$, n=6)

Element	Samı	Sample 1		Sample 2		Sample 3	
	ICP-MS/MS	SF-ICP-MS	ICP-MS/MS	SF-ICP-MS	ICP-MS/MS	SF-ICP-MS	
Mg	2.56 \pm 0.03	2.34±0.04	1.87 ± 0.03	1.92 ± 0.02	2.15 \pm 0.04	2.20 \pm 0.05	
Al	1.36 ± 0.02	1.41 ± 0.02	2.05 ± 0.02	2.09 ± 0.03	3.61±0.05	3.53 \pm 0.04	
К	2.23 \pm 0.01	2.19 ± 0.03	4.59 ± 0.05	4.66 \pm 0.08	1.20 ± 0.02	1.31 ± 0.05	

续表 6						
Ti	2.80 ± 0.05	3.01 ± 0.07	$1.50 \pm 0/02$	1.43 ± 0.03	1.97 ± 0.03	1.83 ± 0.03
V	1.62 ± 0.03	1.57 ± 0.02	0.75 \pm 0.01	0.79 ± 0.01	1.84 \pm 0.05	1.68 ± 0.02
Cr	0.93 ± 0.01	1.04 ± 0.03	2.40 \pm 0.03	2.31 \pm 0.02	2.75 \pm 0.03	2.82 ± 0.03
Fe	5.10 \pm 0.12	5.23 \pm 0.10	3.65 \pm 0.05	3.71 \pm 0.04	8.06±0.13	7.82 \pm 0.16
Ni	1.66 ± 0.02	1.74 ± 0.03	0.69 ± 0.01	0.64 ± 0.01	1.73 ± 0.04	1.81 ± 0.04
Cu	4.77 \pm 0.08	4.92 ± 0.09	2.87 \pm 0.04	2.82 \pm 0.06	3. 21 ± 0.03	3.39 ± 0.05
Zn	3.45±0.04	3.36 \pm 0.05	1.21 ± 0.01	1.16 ± 0.02	2.27 \pm 0.02	2.32 ± 0.02

3 结 论

采用 ICP-MS/MS 对电子级 PGME 中的 10 种超痕量金 属杂质元素进行了准确测定。在 MS/MS 模式下,选择混合 反应气 NH₃/He/H₂ 消除质谱干扰更彻底,利用内标元素校 正了基体效应。各元素的检出限为 0.52~61.5 ng \cdot L⁻¹, 实际样品的加标回收率为 95.6%~104.2%, RSD \leq 4.5%, 采用 SF-ICP-MS 进行对照分析的结果基本一致,验证了本方法的准确性好,精密度高。方法为 PGME 中超痕量金属杂质元素的测定提供了新策略,具有分析速度快,无干扰,灵敏度高的优势。

References

- [1] Liang S, Zhou Y, Liu H, et al. Catal. Lett., 2010, 140: 49.
- [2] Ruiz P, Mumtaz M, Gombar V. Toxicol. Appl. Pharm., 2011, 254(2): 198.
- [3] Niina N, Kudo H, Maruyama K, et al. Poly. J., 2011, 43: 407.
- [4] Balcaen L, Woods G, Resano M, et al. J. Anal. Atom. Spectrom., 2013, 28(1): 33.
- [5] Nie X D, Fu L. Analytical Letters, 2013, 46: 488.
- [6] LIU Hong-wei, ZHANG Ping, HU Han-xiang(刘宏伟,张 萍,胡汉祥). Chinese Journal of Analytical Chemistry(分析化学), 2014, 42(6): 913.
- [7] Fu L, Shi S, Chen X. Spectrochim. Acta B, 2018, 144: 1.
- [8] Clough R, Lohan M C, Ussher S J, et al. Talanta, 2019, 199: 425.
- [9] Fu L, Shi S, Chen X. Food Chem., 2018, 245: 692.
- [10] LIU Hong-wei, NIE Xi-du(刘宏伟, 聂西度). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(12): 3923.
- [11] Fu L, Shi S. Food Chem., 2019, 299: 125172.

Analysis of Ultra-Trace Metal Impurity Elements in Proprylene Glycol Monomethyl Ether Using Inductively Coupled Plasma Tandem Mass Spectrometry

LI Tan-ping, LI Ai-yang

New Building Materials Academy, Hunan Institute of Technology, Hengyang 421002, China

Abstract Based on inductively coupled plasma tandem mass spectrometry (ICP-MS/MS), an analytical method for the accurate determination of ultra-trace metal impurity elements in propylene glycol methyl ether (PGME) was established, and mixed reaction gas was used to eliminate the spectral interference. The challenging ultra-trace metal elements including Na, Mg, Al, Ti, V, Cr, Fe, Ni, Cu, and Zn in diluted PGME were determined directly by ICP-MS/MS. In the MS/MS mode, the mixed gas $NH_3/He/H_2$ was selected as the reaction gas. Ti⁺, Cr⁺, Fe⁺, Ni⁺, Cu⁺, Zn⁺ and NH₃ undergo mass shift reactions. Among the large number of cluster ions formed, Ti(NH₃)⁺₆, Cr(NH₃)⁺₂, Fe(NH₃)⁺₂, Co(NH₃)⁺₂, Ni(NH₃)⁺₃, Cu(NH₃)⁺₂, Zn(NH₃)⁺ have high abundances and interference-free, Ti⁺, Cr⁺, Fe⁺, Ni⁺, Cu⁺, Zn⁺ can be transferred to the corresponding cluster ions for determination by NH₃ mass shift method. H₂ can react with the adducts —NH and —NH₂ to form —NH₃. Increasing the concentration of —NH₃ in the collision/reaction cell (CRC) will help to improve the analytical sensitivity of Ti, Cr, Fe, Ni, Cu, Zn, Mg⁺, Al⁺, K⁺, V⁺ can hardly react with NH₃, and the interference ions can react with NH₃ to form cluster ions. The NH₃ on-mass method can be used to determine the contents of Mg, Al, K, and V. Argide ions react with

 H_2 at a relatively fast rate, while nearly all elemental ions exhibit low reactivity with H_2 . Therefore, the addition of H_2 to the reaction gas can quickly and completely eliminate the spectral interference caused by Argide ions, which is beneficial to the determination of Mg, Al, K, and V. The cluster ions $Sc(NH_3)_5^+$ generated by the reaction between Sc^+ and NH_3 were selected as the standard internal ions of $Ti(NH_3)_6^+$, $Cr(NH_3)_2^+$, $Fe(NH_3)_2^+$, $Ni(NH_3)_3^+$, $Cu(NH_3)_2^+$, and $Zn(NH_3)^+$. The cluster ions $Be(NH_3)_4^+$ generated by the reaction between Be^+ and NH_3 were selected as the standard internal ions of Mg^+ , Al^+ , K^+ , and V^+ . The matrix effect caused by the difference of physical and chemical properties between sample solution, standard solution and the blank solution was corrected to ensure the stability of the analytical signal. The developed method was applied to the spike recovery experiment of real samples, and the accuracy was evaluated by comparing and analyzing with sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). The results show that the limit of detection is $0.52 \sim 61.5$ ng • L^{-1} , the spiked recovery is $95.6\% \sim 104.2\%$, and the relative standard deviation (RSD) is $\leq 4.5\%$. At the 95% confidence level, there is no significant difference between the analysis results of analytes and that of SF-ICP-MS, which verifies the accuracy and precision of this analysis method. The method shows great potential for determining the ultra-trace metal impurity elements in PGME, and has the advantages of rapid, interference-free and high sensitivity.

 $\label{eq:Keywords} \mbox{ICP-MS/MS; Proprylene glycol monomethyl ether; Metal impurity elements; Collision/reaction cell technology; NH_3/He/H_2$

(Received Dec. 26, 2019; accepted Mar. 19, 2020)